GREVILLEA ROBUSTA SEED OIL: A SOURCE OF ω -5 MONOENES

RONALD D. PLATTNER and ROBERT KLEIMAN

Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, U.S.A.

(Received 4 August 1976)

Key Word Index—Grevillea robusta; Proteaceae; triglycerides; ω-5 monoenoic acids; methoxy derivative; GC-MS.

Abstract—The fatty acids from *Grevillea robusta* seed oil triglycerides contain 22.5% ω -5 monoenes ranging in chain length from C_{14} to C_{28} . C_{16} to C_{26} saturates (18%), C_{18} to C_{24} ω -9 monoenes (55%), C_{18} diene (2.3%) and C_{18} triene (0.7%) make up the remainder of the acids.

INTRODUCTION

 ω -5 Monoenes, although produced by several microorganisms, are not widely found as plant constituents [1, 2]. The only ω -5 monoene from a plant source reported in the literature is Δ 11-16:1 which was found by De Tomas and later by Gunstone in the seed oil of Gevuina avellana (Proteaceae) [3, 4]. We have found that the Me esters derived from the seed oil of Grevillea robusta (Proteaceae), known as the silk oak, an Australian shade and timber tree, contain 8.7% of this ω -5 monoene. In addition to the C_{16} ester, we found the previously unreported homologous ω -5 monoene series with chain lengths of C_{14} to C_{28} . Together these constituents comprise 22.5% of the esters derived from the seed oil of this plant.

RESULTS AND DISCUSSION

The composition of Grevillea robusta seed is given in Table 1. The oil contained large amounts of long chain saturates ($\sim 10\%$) and monoenes and little polyunsaturates ($\sim 3\%$). A homologous series of components with ECL's 0.7 units higher than their saturated analogs on the LAC-2-R446 column was observed. Since ω -9 monoenes have ECL's 0.4 units greater than the saturate of the chain length and ω -6,9 dienes have ECL's 1.0 unit greater than the saturate [5], the presence of either unusual monoenes or dienes was suggested. GC-MS showed these components to have M⁺ consistent with monoenes. Double bond positions of the monoenes were determined by GC-MS using the corresponding methoxy derivatives. Table 2 shows the fragments from the methoxy derivatives used to determine the positions of unsaturation in G. robusta monoenes. The two methoxy derivatives obtained from ω -9 and ω -5 monoenes were not completely resolved by GLC. Plots of ions characteristic of ω -5 (m/e 101 and 115) and ω -9 (m/e 157 and 171) vs total ionization showed partial separation of the derivatives at C_{18} , C_{20} , and C_{24} . No ω -9 derivatives were observed at C₁₄, C₁₆, C₂₆ or C₂₈. The diene and triene fractions were shown to be methyl linoleate (9,12–18:2) and methyl linolenate (9,12, 15-18:3) by GC-MS of their partially methoxylated esters [6].

Roughly 25% of the fatty acids of Gevuina avellana [2] is $\Delta 11$ (ω -5) C_{16} monoene while this monoene and its homologs comprise 22.5% of the acids of Grevillea robusta. ω -5 monoenes have not been reported in any

Table 1. Composition of esters from Grevillea robusta seed oil

Component	% by GLC	
14:0	0.1	
14:1(ω-5)	0.2	
15:0	tr.	
16:0	3.3	
16:1 (ω-5)	8.7	
17:0	0.1	
18:0	4.8	
18:1 (ω-9)	50.2	
18:1 (ω-5)	3.1	
18:2	2.3	
18:3	0.7	
20:0	4.4	
20:1 (ω-9)	3.0	
20:1 (ω-5)	3.1	
22:0	3.3	
22:1 (ω-9)	1.9	
22:1 (ω-5)	5.1	
24:0	1.6	
24:1 (ω-9)	0.9	
24:1 (ω-5)	1.2	
26:0	0.4	
26:1 (ω-5)	1.1	
28:1 (ω-5)	tr.	

other Proteaceous species. The others, most notably Macadamia ternifolia, produce seed with high amounts of C_{16} monoene and little polyunsaturates. However, the C_{16} monoene is $\Delta 9$ (ω -7) and the C_{18} monoenes are predominantly $\Delta 9$ (ω -9) with lesser amounts ($\sim 6\%$) $\Delta 11$ (ω -7) [7, 8]. No $\Delta 11$ - C_{16} or $\Delta 13$ - C_{18} monoenes have been reported. We also examined the seed oils of Macadamia ternifolia and two other Proteaceae (Isopogon petiolaris and Leucospermum conocarpum). We found no evidence of ω -5 monoenes in any of these seed oils.

Me
$$-O-C-(CH_2)$$
 $CH-CH-(CH_2)_m$ Me

Table 2. Fragments used to determine position of unsaturation in *Grevillea robusta* monoenes

Component	Fragments			
	A	A ¹	В	B ¹
Δ9 14:1*	201	215	115	101
Δ11 16:1*	229	243	115	101
Δ9 18:1†	201	215	171	157
Δ13 18:1*	257	271	115	101
Δ11 20:1†	229	243	171	157
Δ15 20:1*	285	299	115	101
Δ13 22:1†	257	271	171	157
Δ17 22:1*	313	327	115	101
Δ15 24:1†	285	299	171	157
Δ19 24:1*	341	355	115	101
Δ21 26:1*	369	383	115	101
Δ23 28:1*	397	411	115	101

 $[\]star = \omega 5$; $\dagger = \omega 9$.

EXPERIMENTAL

Oil (13.8%, dry basis) was extracted from ground seed with petrol (bp 30–60°). Me esters prepared from the oil with BF₃–MeOH, were analyzed by GLC on a 3.7 m \times 7 mm glass column packed with 5% LAC-2-R446 on Chromosorb W. PLC was performed on 1 mm thick layers of AgNO₃–Si gel G (1:4) and plates were developed in C₆H₆. Developed plates were sprayed with 2',7'-dichlorofluorescein–EtOH and bands were observed under UV light. Esters were recovered from scraped portions of the plate by extracting the adsorbent with Et₂O. Double bonds were located by GC–MS using methoxy derivatives as reported previously [9, 10].

REFERENCES

- Smith, C. R. (1970) Prog. Chem. Fats Other Lipids, XI (Pt. 1), 137.
- 2. Pohl, P. and Wagner, H. (1972) Fette Seifen Anstrich. 74, 424.
- 3. DeTomas, M. E., Brenner, R. R. and Cattaneo, P. (1963) Rev. Argent. Grasas Aceites 4, 53.
- Gunstone, F. D., Hamilton, R. J., Padley, F. B. and Qureshi, M. I. (1965) J. Am. Oil Chem. Soc. 42, 965.
- Miwa, T. K., Mikolajczak, K. L., Earle, F. R. and Wolff, I. A. (1960) Anal. Chem. 32, 1739.
- Plattner, R. D., Spencer, G. F. and Kleiman, R. (1976) Lipids 11, 222.
- 7. Bridge, R. E. and Hilditch, T. P. (1950) J. Chem. Soc. 2396.
- 8. Kummel, D. F. and Chapman, L. R. (1968) Lipids 3, 313.
- Kleiman, R., Spencer, G. F., Earle, F. R. and Wolff, I. A. (1969) Lipids 4, 135.
- Plattner, R. D., Spencer, G. F. and Kleiman, R. (1975) Lipids 10, 413.